If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2-35x+125=0
a = 1; b = -35; c = +125;
Δ = b2-4ac
Δ = -352-4·1·125
Δ = 725
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{725}=\sqrt{25*29}=\sqrt{25}*\sqrt{29}=5\sqrt{29}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-35)-5\sqrt{29}}{2*1}=\frac{35-5\sqrt{29}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-35)+5\sqrt{29}}{2*1}=\frac{35+5\sqrt{29}}{2} $
| (-3x+6)(x-2)=0 | | 2(x+8)=5(x-1) | | y=4E-09*104^3,8801 | | 2x^2-26x+95=0 | | -10=2+5t+7t | | -3=7(y-9/7)y= | | 9x-5x-3x+4x+8x=35 | | -8(x+5)=24 | | 9(x+5)=56 | | 7–5a=5–7a | | (3-2x)/(5x)=0 | | 2x(x-2)=30 | | (2×+5)=(a+1) | | 2a+1=3a-4 | | 0=(n-10)(n+7 | | 13x+20=20x-8 | | 7x-1(3x+5)-8=½(8x+20)-7x+5 | | ½(8x+26)=7x-2(4x+13) | | 2x2+-10=40 | | (x-10)+(2x-50)+3x=360 | | (Y+23)+(2x-17)=63 | | 2q^2-11q-6=0 | | 2q^2-11q+12=18 | | 6(x+4)=3(2x+8) | | 25x+3x+7x+5x=40 | | 6x+3x+2x+5x=32 | | 2y–10=6y-50 | | 22. 2y–10=6y-50 | | √3x=150-x | | 35x180=180 | | 3x/4+31/4=60 | | 2a=(a^2-3a+1) |